Simulation of the Neutron-physical Properties of the Classical UO$_2$ Fuel and of MOX Fuel During the Burn-up by Transuranus

Juraj Breza jr., Vladimír Nečas
Slovak University of Technology
Faculty of Electrical Engineering and Information Technology
Department of Nuclear Physics and Technology
Ilkovičova 3, SK-812 19 Bratislava, Slovakia
juraj_breza@stuba.sk, vladimir.necas@stuba.sk

Petr Dařílek
VUJE Inc.
Okružná 5, SK-918 64 Trnava, Slovakia
darilek@vuje.sk

ABSTRACT

The classical nuclear fuel UO$_2$ is well known for VVER reactors. Nevertheless, in the near future it will be possible to replace this fuel by novel, advanced kinds of fuel, for instance MOX, inert matrices fuel, etc., that will allow to increase the level of burn-up and minimize the amount of hazardous waste.

The code TRANSURANUS [2], designed at ITU Karlsruhe, is intended for thermal and mechanical analyses of fuel elements in nuclear reactors. We have utilized the code TRANSURANUS to simulate the neutron-physical properties of the classical UO$_2$ fuel and of MOX fuel during the burn-up to a level of 40 MWd/kgHM. We compare obtained results of uranium and plutonium nuclides concentrations, their changes during burn-up, with results obtained by code HELIOS [3], which is well-validated code for this kind of applications. We performed calculations of fission gasses concentrations, namely xenon and krypton.

1 INTRODUCTION

In 2004, as many as 444 nuclear energy reactors were operated in 31 countries worldwide. Most of them burn classical nuclear fuels, thus either uranium dioxide UO$_2$ containing natural uranium or enriched uranium by U-235 or, less often, the so-called MOX (Mixed Oxide) fuel, which is a mixture of UO$_2$ and PuO$_2$.

The use of nuclear fuels and introduction of their novel types requires detailed knowledge of the behaviour of the fuels in all possible states in which they occur. However, experimental studies and verifications of the behaviour of nuclear fuels often cannot be performed because of safety and instrumental reasons or because of too long times needed to conduct such studies. This is why modelling and computer simulation of the behaviour of nuclear fuels is increasingly used. Computer analyses and simulations allow obtaining the evolutions of single characteristics of the fuel at any instant in the course of its burn-up.
Naturally, the knowledge of the properties of the nuclear fuel not only improves the efficiency but also the operation safety.

Numerous computer codes have been developed for nuclear fuel burn-up modelling and simulation. Nevertheless, they usually focus on different aspects and properties of the fuel. The objective of this paper is to employ the codes HELIOS and TRANSURANUS to simulate the properties of UO\(_2\) and MOX during the burn-up and to compare the obtained results.

2 COMPUTER CODES

A number of computer codes have been developed for nuclear fuel neutron irradiation modelling and simulation. Nevertheless, they usually focus on different aspects and properties of the fuel materials. The objective of this paper is to employ the codes TRANSURANUS and HELIOS to simulate the properties of UO\(_2\) and MOX during neutron irradiation, burn-up, and to compare the obtained results. Preliminary results were published in [1].

Computer technology is very efficiently used to model, simulate and analyse different states of the fuel. The models implemented in the computer codes may either describe the fuel element as an aggregate or analyze its local details. It is crucially important to define the maximum dimensions of the model reasonably. Usually it is enough to model just one fuel pin, to insert different defects, and to apply the obtained result to more fuel pins. In most cases, the specific computer codes are of empirical nature: they utilize the databases of existing data and empirically obtained equations describing the required parameters. Naturally, the best way of validating the results is their comparison with experimental data, which is often a very difficult task.

2.1 Helios

HELIOS [3] is a neutron gamma transport computer code. It allows modelling and simulation of the burn-up of the nuclear fuel in a lattice structure in 2D geometry. Computations of resonant shielding for nuclides are incorporated in the data of the code. The code solves various material structures of arbitrary geometry that are mutually connected by particle flows with boundary conditions. The transport method employed, Current Coupling Collision Probabilities (CCCP), is based on connecting the structures of the lattice and on the probabilities of interaction of the particles with the matter. The input data contain the geometrical representation of the fuel, definitions of sizes and distances, mutual connections and links, fuel composition, etc. The required input data may include the multiplication coefficient, atomic or mass concentrations of isotopes and pin powers. Processor AURORA reads the data, processes them and stores them in a binary file needed in subsequent computation.

One can define the desired mode of computation and of the output data. Processor ZENITH prepares the required mode of computation and the required output data of the HELIOS code. The processors are mutually interconnected by subroutine HERMES providing the flow of data between single processors, HELIOS and the database on isotopes containing, e.g., their fission cross-sections, absorption cross-sections and other parameters.

2.2 Transuranus

TRANSURANUS [2] is a computer code intended for thermal and mechanical analyses of the fuel elements in a reactor. It allows modelling and simulation of the nuclear fuel and its operation states (or experiments) in the time period from some milliseconds to several years.
Design of the program began at the University of Darmstadt, Germany in 1973. From 1978 to 1982 the work runs simultaneously at the University of Darmstadt and at the Institute for Transuranium Elements (ITU) in Karlsruhe, Germany. Since 1982, the research has been pursued solely at ITU.

TRANSURANUS is an empirically based code. It incorporates physical models of thermal and radiation densification of the fuel, models of fuel swelling, fuel cracking and relocation, a model of generation of fission gases, a model of redistribution of oxygen and plutonium, and some other physical models. The code is exploited mainly by research institutions, industries and license bodies.

The input file of the code contains complete data needed for computation. It determines the type of reactor, cladding, coolant, fuel geometry and dimensions, surface roughness, coefficients of heat transfer, initial concentrations of uranium and plutonium isotopes, the course of power loading and the length (period) of computation. Switches 0 and 1 define the route of computing.

The output data are provided by subroutine URPLOT. It generates data files for single times, distances or locations at the fuel pin. Optionally, the output data include the pellet radius, pressure in the gap, contact pressure between the pellet and cladding, concentrations of fissionable isotopes U-235, Pu-239 to Pu-242, concentrations of fission gases, temperatures of the fuel, cladding and gases in the gap and other parameters.

3 SIMULATIONS

In our study we have simulated the behaviour of fuel pins in the course of burn-up. For computing the stationary state of the classical UO$_2$ fuel and of MOX, thus for the case of a fault-free operation at a constant power, input files have been created defining the properties of the kinds of fuel. In these files, physical parameters have been entered starting with dimensions of the pellets and of the cladding, pellet surface roughness, stochiometry, oxygen ratio, heat transfer coefficients, fuel grain sizes, pellet porosity, initial values of uranium enrichment and plutonium content, pin height, etc. The fuel has been divided into 10 sections, each cross-section being divided into 8 rings: 5 rings of fuel and 3 rings of cladding. At the beginning, the fuel and cladding were not in a direct contact. The chosen fuel dimensions consider the use of the distance grids in the reactor. The pins have been filled with a gas mixture composed of 98% of helium, 1% of nitrogen and 1% of H$_2$O to a pressure of 0.6 MPa at 20 °C. The input parameters have been taken from the model of fuel pins in reactors VVER-440 provided by the VÚJE Inc., Trnava. Tables 1 and 2 summarize the fuel dimensions and initial isotopic concentrations.

The physical model employed assumes a linear power of 12.921 kW m$^{-1}$ along the whole height of the pin. The total time of burn-up is set to 32 000 hours (3.6 years).

<table>
<thead>
<tr>
<th>Table 1: Dimensions of simulated fuel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner pellet diameter</td>
</tr>
<tr>
<td>Outer pellet diameter</td>
</tr>
<tr>
<td>Inner cladding diameter</td>
</tr>
<tr>
<td>Outer cladding diameter</td>
</tr>
</tbody>
</table>

Proceedings of the International Conference “Nuclear Energy for New Europe 2005”
Table 2: Initial isotopic concentrations for UO$_2$ and MOX fuel

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Concentrations (g/gHM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UO$_2$</td>
</tr>
<tr>
<td>U-235</td>
<td>0.038</td>
</tr>
<tr>
<td>Pu-239</td>
<td>0.000</td>
</tr>
<tr>
<td>Pu-240</td>
<td>0.000</td>
</tr>
<tr>
<td>Pu-241</td>
<td>0.000</td>
</tr>
<tr>
<td>Pu-242</td>
<td>0.000</td>
</tr>
</tbody>
</table>

3.1 Results

Figure 1 shows the time evolution of the concentration of U-235 and Pu isotopes in the course of the burn-up for UO$_2$ fuel. The burn-up is given in MWd/kgHM, thus in mega watt days per kilogram of heavy metal, and the concentration of nuclides in g/gHM, thus in grams per gram of heavy metal.

![Graph 1](image1)

Fig. 1: The decrease of uranium 235 and the rise of plutonium isotopes during the burn-up of UO$_2$ fuel

Figure 2 shows the burn-up curves for evolution of the concentration of U-235 and Pu isotopes in the course of the burn-up for MOX fuel.

![Graph 2](image2)

Fig. 2: The decrease of uranium 235 and the evolution of plutonium isotopes during the burn-up of MOX fuel

The best way how to validate the simulated results is to compare them with other results, obtained from experiments or well-validated code. Of course, there is still some
uncertainty. Figure 3 presents the relative deviations of the results yielded by TRANSURANUS from those obtained by HELIOS. HELIOS is generally considered to be a well-validated code for simulating the process of nuclear fuel burn-up.

The rest of results are fission gases xenon and krypton concentration in pin filling gas and xenon-krypton ratio. It seems the results of concentrations are the same for both kinds of fuel, but higher concentrations of xenon and also of krypton are in burning UO$_2$ fuel. Figure 4 show the evolution of gas concentration of xenon and krypton in UO$_2$ and MOX fuel. Figure 5 show the xenon to krypton ratio for UO$_2$ and the MOX fuel, respectively.
4 CONCLUSION

The burn-up characteristics computed by TRANSURANUS are in reasonable agreement with those yielded by HELIOS. The relative deviations range from –10 to +10%, which is quite satisfactory for practical applications. Deviations between the simulated results are believed to be caused by different physical models employed as well as by different databases and libraries. Additionally, minor deviations may stem from different procedures and accuracies of computations. However sophisticated the computer codes for this kind of computation are, the employed databases still possess some uncertainties and they have to be further completed and updated.

From among all nuclides, TRANSURANUS allows to compute concentrations of only two elements, U and Pu. HELIOS, on the other hand, provides information on a broad range of nuclides.

No matter how good the agreement is between the results provided by the two codes, final verification of the data may only be achieved by experiments.

REFERENCES

[3] HELIOS documentation, Studvisk Scandpower, April 2000, Norway